Friday, 17 December 2010

The government isn’t telling us the true cost of nuclear waste disposal

Dr Paul Dorfman
13th December, 2010

UK plans for ten new nuclear power plants will create £80 billion worth of radioactive waste that we still have no secure way of disposing

The Department of Energy and Climate Change (DECC) and the nuclear industry have a plan for 10 new ‘Generation 3’ reactors, each one containing 2.5 times the radiological inventory of the UK’s biggest AGR reactor at Sizewell B. In a recent Ministerial statement, Chris Huhne, the Secretary of State for DECC made it clear that the Coalition is not ruling out taking on unspecified nuclear ‘financial risks or liabilities’ to make this happen. Given the sheer weight of our current nuclear legacy, its' clear that this will also involve nuclear waste ‘financial risks or liabilities’.

The most recent estimates are that, once ‘packaged’, the UK already has around 1,420 cubic metres of hot high-level radioactive waste, 364,000 cubic metres of long lived intermediate-level radioactive waste, and 3,470,000 cubic metres of toxic low-level radioactive waste. The Government proposes to house the high and intermediate part of this vast inventory in a deep hole five times the size of the Albert Hall over millennia. Government officials estimate that the cost of managing this waste and decommissioning will be around £80 billion and rising – five years ago it was around £50 billion. There are no secure estimates for costing a deep disposal repository.

Waste will be five times more radioactive

And this is just what we have at the moment. Although the nuclear industry estimate that any new build radioactive waste would increase the problem by only 10 per cent in volume - they fail to mention that the Committee on Radioactive Waste Management has worked out that the radioactivity would increase by five times, which means that we would need 15 Albert Halls to house the waste.

Steve Thomas, Professor of Energy Policy at the University of Greenwich Business School, suggests that the liberalisation of the energy market in Europe has pressured the nuclear industry to become more competitive. The industry realised that a decrease in cost could be achieved if the reactor’s power could be increased, and this could happen by using more enriched uranium as reactor fuel. The logic is that this ‘super-charged’ fuel will be left in the reactor for longer in order to provide, as Jeremy Clarkson might say, ‘more power’.

Unfortunately, the Law of Unintended Consequences also means that this ‘high burn-up’ spent fuel is twice as radioactive than conventional spent fuel, and the reactor operations will have a much tighter safety margin. This is because high burn-up fuel is much hotter, much more radioactive, and performs very poorly when subject to ‘abnormal conditions’. John Large, an international consulting nuclear engineer, notes that ‘These risks persist through the nuclear cycle, as high burn-up fuel is liable to release a much higher content of its fission product inventory, known as the ‘immediate release fraction’, than fuel used in current reactors. And the situation isn’t being helped by the nuclear industries heroic safety claims: AREVA EdF’s ‘worst case’ estimate - including terrorist attack – insist that no more than 0.2 per cent of the reactor core content would be released during ‘open containment’ in ‘abnormal conditions’.

But surely things are better elsewhere? Well, not really. Although the deep geological concept is in the very early stage of testing in Finland and Sweden - in the US, Obama has withdrawn funding from the Yucca Mountain geological radioactive waste dump, saying that ‘After spending billions of dollars on the Yucca Mountain Project, there are still significant questions about whether nuclear waste can be safely stored there’. In Japan and Germany, proposals for deep disposal facilities have encountered strong opposition, and in France, 15 years of research on deep underground burial has proved ‘inconclusive’.

No comments:

Post a Comment